Industry Perspectives with Ash: Past, Present and Future

Daksh Baweja

Director – DMC Advisory Technical Consultant - BG&E Industry Fellow, School of Civil Engineering - UTS

Presentation Summary

- •Where we have come from
- Design and construction with fly ash and CCPs
- Low carbon concrete, structures and projects
- •Where to from here?

Where we have come from

- History of fly ash in Australian standards
- Its changing use
- Durability and sustainability

A look at Concrete

Where fly ash has been used as part of the binder

Structural concrete

• AUSTRALIA

- 30 million cubic metres of concrete per annum
- •USA
 - -400 million cubic metres of concrete per annum
- •WORLD
 - 10 billion cubic metres of concrete per annum

Fly Ash in Concrete: Standards Roadmap

Australian Standards for Concrete Structures, Bridges and Specification/Supply

CONCRETE STRUCTURES

- 1934: Concrete structures code CA2 first published
- 1974: AS1480 published
- 1988: AS3600 published
- 1994: AS3600 revision
- 2001: AS3735 Liquid Retaining Structures published
- 2001: AS3600 revision
- 2009: AS3600 revision
- 2018: AS3600 revision

BRIDGE DESIGN

- 1992: Australian Bridge Design Code (Austroads ABCB) published
- 1996: ABCB revised
- 2004: AS5100.5 Bridge Design published
- 2017: AS5100.5 revision
- SPECIFICATION AND SUPPLY
- 1941: AS(E)A502 published
- 1991: AS1379 published
- 1997: AS1379 revised
- 2007: AS1379 revised

Common Concrete Binder Standards in Australia

CEMENT

- 1925: First cement standard AS-A2
- 1972: Blended cement published
- 1973: AS1315 Portland Cement published
- 1982: AS1315 and AS1317 revised
- 1991: AS3972 Portland and Blended Cements published (no Bogue compositions)
- 1997: AS3972 revised
- 2010: AS3972 revised

SLAG (GROUND GRANULATED (IRON) BLAST FURNACE)

- 1991: AS3582.2 Slag first published
- 2001: AS3582.2 revised
- 2016: AS3582.2 revised

SILICA FUME/AMORPHOUS SILICA

- 1994: AS3582.3 Silica fume first published
- 2002: AS3582.3 revised (Amorphous Silica)
- 2016: AS3582.3 revised

MANUFACTURED POZZOLANS

 2022: AS3582.4 Manufactured Pozzolans first published

Fly Ash in Australian Standards

- 1971: AS 1129 "Fly Ash for Use in Concrete"
- 1971: AS 1130 "Code of Practice for the Use of Fly Ash in Concrete"
- 1991: AS3582.1 "Supplementary Cementitious Materials for Use with Portland Cement, Part 1 – Fly Ash"
- 1998: AS3582.1 revised
- 2016: AS3582.1 "Supplementary Cementitious Materials, Part 1 – Fly Ash" revised

Design and Construction with Fly Ash and CCPs

- Role of designers
- Role of contractors in major infrastructure projects

"Traditional" Concrete:

- N Class or S Class AS1379
 - 20 MPa
 - 25 MPa
 - 32 MPa
 - 40 MPa
 - 50 MPa
- S Class AS1379
 - 65 MPa
 - 80 MPa
 - 100 MPa
 - 120 MPa

- Fly ash included in most concretes commercially since about 1966
- Constructability benefits
- Have been "rationed" because of potential lack of supply (AS3582.1 conforming)
- Imported from overseas in the last 10 to 15 years to supplement requirements

Growth in Specified Concrete Strength (on your projects)

Project Specifications

- Infrastructure
 - Mostly transport authorities
 - Long history of specification development
 - Long term durability critical call for minimum cement contents
 - 100 year design lives
 - Design (structural) efficiencies sought
 - Efficient construction required
 - Combination of prescriptive and performance based specs
 - Sustainability (work in progress)

Buildings

- 50 year design lives
- Require efficient design
- Must be cost effective
- Require efficient and low cost construction
- Design usually optimised for cost and efficient structural elements (e.g. columns, slabs and walls)
- Sustainability (work in progress)

Fly Ash Use in Concrete - Historical

- 1940's Bureau of Reclamation Structures, USA
- 1949 Snowy Mountains scheme
- 1953 East Perth Power Station fly ash in concrete structures in Perth
- 1958 Wangi fly ash in Keepit Dam, NSW
- 1966 Became commercially available in premixed concrete in Australia
- 1970's Significant uptake in concrete
- 1980's Significant research done on durability
- 1990's Becomes a benchmark in Normal Class concrete
- 2000 to 2005 First indications of shortages of AS3582.1 compliant fly ash in construction in Australia
- 2010 Sustainability further drives fly ash and SCM use in concrete in Australia

Why we Use Fly Ash in Concrete

- Lower chloride diffusion
- Manage carbonation (with appropriate mix design)
- Resistance to sulfate attack
- Resistance to chemical attack
- High resistance to ASR
- Managing DEF

- Lower shrinkage
- Potentially lower cracking
- Increased constructability
- Lower creep
- Lower joint movement
- Improved serviceability
- Lower carbon structures with appropriate design – not simply to replace cement in concrete

Low Carbon Concrete, Structures and Projects

Learning from the past – high performance concrete

Conflicting requirements for managing carbon in materials versus carbon in structures/projects

"Concrete" Hot Topics

Themes from the past that guide us into the future

- 1983: The Durability Debate
 - No standard had specific provisions for durability
- 1985: Concrete Cancer
 - "The cancer that is eating our city buildings" Financial review
- 1997: High Performance Concrete
 - "The concrete we want but can't talk about without being misunderstood" RJ Potter, Cement & Concrete Association of Australia

• 2022: Net Zero

- "achieving an overall balance between greenhouse gas emissions produced and greenhouse gas emissions taken out of the atmosphere"
- 2023: The Sustainability Debate
 - No standard had specific provisions for sustainability
- 2024: Low Carbon Concrete
 - Concrete that has a reduced embodied carbon
 - "The concrete we want but can't talk about without being misunderstood"

Decarbonisation Pathways for Australian Cement and Concrete Sector

VDZ – CCAA, CIF SmartCrete and Race for 2030

"Environmental" efficiency, reducing carbon and "net zero" • What does this mean?

- Currently achieved by reducing cement
- Considered a purely materials issue
- No consideration for impacts on design and construction
- No consideration of structural and constructional efficiency
- Needs also to consider structure reuse

Column Design

- AS3600-2018
- Combined load = 2814 kN
- A_s = 0.01A_g

- $\sigma_{y_{steel}}$ = 500 MPa
- Cover = 25 mm
- Length = 2.5 m

The "S" word

Column Design Example – <u>NO CORRELATION</u>

- The current solution to sustainability is to reduce cement in concrete
- Simple column with applied load and normally designed
 - Column embodied energy ≠ concrete embodied energy
- Goes against design and construction principles
- We need research to determine how to reduce carbon in:-
 - Structural elements
 - Structures
 - Projects

Where to from Here?

- How best do we use fly ash and CCPs?
- What are the industry challenges?
- What role should power producers take in facilitating?

Fly Ash

- Ungraded fly ash
 - Run of station ash (90% vol)
 - Ash stored in dams
 - Repository ash
 - Can be used as an aggregate supplement
- Graded Fly ash (AS3582.1)
 - Grade 1 (concrete grade)
 - Grade 2
 - Special grade (ultrafine)
- Ungraded furnace ash (10% vol)
 - Can be used as an aggregate supplement

- Graded fly ash restricted to traditional "structural" concrete
 - Extensively used
 - First used in Australia in 1949 and in NSW in 1958
 - Offers significant design and constructional benefits to concrete and roadbases

- Should not be used to solely replace cement
- Ungraded fly ash provides massive future opportunities

Concrete Redefined

Concrete Compressive Strength Class	Opportunity for CCPs	ССР Туре
<2 MPa	 Modification and stabilisation of subbases Drainage layers Granular courses in pavements Non-structural fill materials 	Ungraded fly ashUngraded furnace ash
2 MPa to 5 MPa	 Lean mixed concrete for pavement subbases Structural fill materials Masonry units and components 	 Ungraded fly ash Ungraded furnace ash Graded fly ash
10 MPa to 15 MPa	 Specialist fill materials Low grade unspecified concrete 	 Ungraded fly ash Ungraded furnace ash Graded fly ash
20 MPa to 50 MPa	Structural concrete (N and S Class)Major current market	Graded fly ash
65 MPa to 100 MPa	S Class High Performance ConcreteMajor current market	Graded fly ash
120 MPa and greater	Ultra high performance concrete	Specialist grade CCPs

Future considerations for CCPs

- We have been working with graded fly ash in construction for a long time – lots of history
- We cannot keep going the way we are – doing so will result in
 - Waste
 - Unoptimized material use

- We need to rethink how we currently view fly ash and CCPs
- Maintain efforts with graded (AS3582.1 compliant) fly ash materials
- Consider how to use ungraded materials
 - Convert to comply with graded specifications
 - Look at opportunities in other areas (as quarry material inclusions)
 - Look at changing specifications to allow inclusion of lower graded and ungraded materials e.g. in
 - ${\rm \circ}$ Subbase layers and subgrade modifications
 - \circ Lean mix concrete
 - $_{\odot}$ Structural fill materials and roadbases

Optimised CCP Use

This will require commercial change

Conclusion: We need CCPs

- Construction with concrete is complex
- Supply of construction materials to projects is complex there is a future need for CCPs in construction
- The approach we have used in the past to get CCPs to market will not work into the future
- Concrete itself needs to be thought of more broadly (from <2 MPa to 120 MPa)
- We need to rethink how we take our CCPs to market

