UTS: ENGINEERING AND INFORMATION TECHNOLOGY

ADAA INTERNATIONAL SYMPOSIUM – 8-9 October 2024 Exploring Coal Combustion Product Harvesting Opportunities

ROLES OF FLY ASH IN SUSTAINABILITY A concrete engineering viewpoint

Dr Vute Sirivivatnanon Professor of Concrete Engineering

Innovation in practice eng.uts.edu.au • it.uts.edu.au

PIONEERING THE USE OF FLY ASH

1950 **Keepit Dam** Lowering the heat of hydration

1955

The grand experiment

1960 Mummorah Power Station 1967-2012

1965

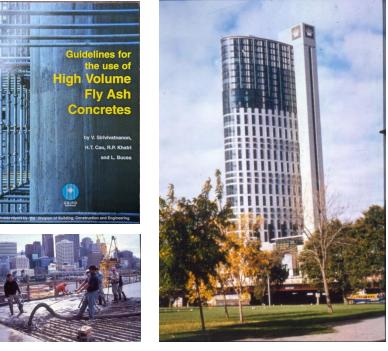
1970 **Pump or not to pump** Value of fly ash in improving workability

1975

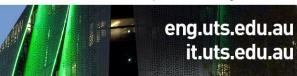
UNSW Round House

Methods of fly ash mix design

1980



Sirivivatnanon, V., Marsh, P. and Nelson, P., 'Comparative Field Performance of Portland-Cement and Fly-Ash Concrete' Proceedings of Concrete Institute of Australia Concrete 97 Conference, Adelaide, Australia, 14-16 May 1997, pp. 131-139.



DECADES OF RAPID DEVELOPMENTS

1980	RTA Specifications
1982	"No fly ash shall be used"
1984	
1986	Concrete durability research & AS3600
1988	Concrete for the Nineties
1990	Advancement in Australian Concrete Tech
1992	High Volume Fly Ash Concrete
1994	Electricity Commission of NSW – Peter Nelson CANMET promotes 56% HVFA concrete
1996	RTA B80 Specifications
1998	"Fly ash and slag shall be used"
2000	

Sirivivatnanon, V., Cao, H.T., Khatri, R. and Bucea, L., 'Guidelines for the Use of High Volume Fly Ash Concretes, CSIRO DBCE Technical Report TR95/2, August 1995

SCMs & ALTERNATIVE CONCRETE

2000	Sydney Harbour Tunnel Fly ash concrete in marine environment
2005	CSIRO Development of Geopolymer Concrete
2010	Green Building Council Use of 40% fly ash in concrete
2010	•

2015

4

2020 SmartCrete CRC Use of CCP in Low Carbon Concrete

SA Technical Specification TS199

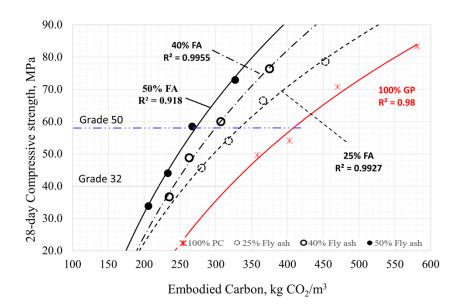
2025 "Geopolymer and Alkali Activated Binder"

2030

UTS: ENGINEERING AND INFORMATION TECHNOLOGY

Sirivivatnanon, V., Xue, C. and Khatri, R., 'Service-Life Design of Low-Carbon Concrete Containing Fly Ash and Slag under Marine Tidal Conditions', ACI Materials Journal, November 2022.

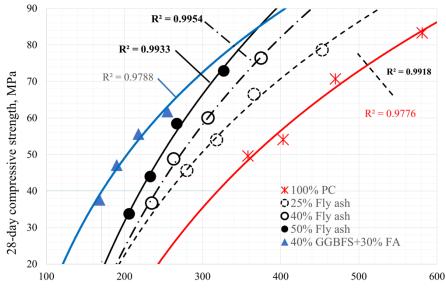
EMBODIED CARBON OF CONCRETING MATERIALS Kg CO₂-e per kg


Materials	/	GP cement	Slag	Fly Ash	Ccarse vgg	Fine Agg	Admix tures	Water
Aus LCI		0.905	0.195	0.020	0.011	0.004	4.253	0.0004
ICE version	2*	0.930	0.083	0.008	0.005	0.005	0.380	0.001

eng.uts.edu.au

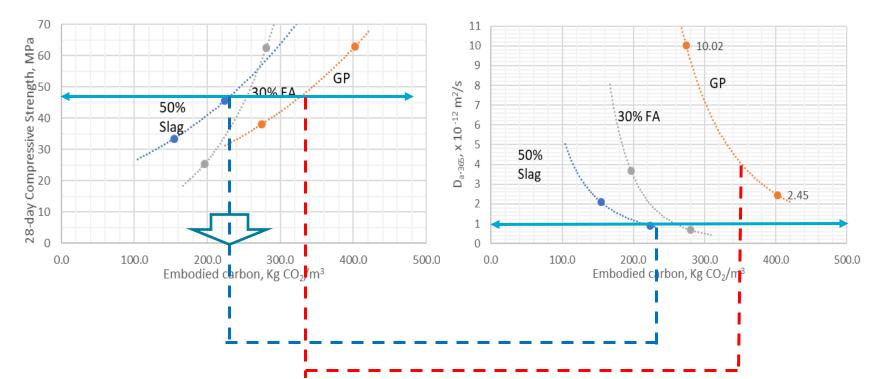
it.uts.edu.au

*Inventory of Carbon & Energy (ICE) Version 2.0 developed by Hammond & Jones 2011


Effect of FA on 28-day compressive strength and Embodied Carbon

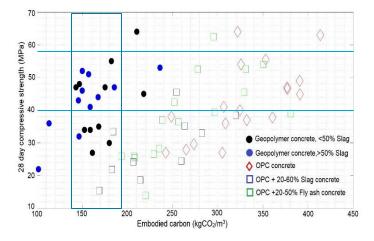
	Grade	32	Grade 50		
Binder	EC kg CO₂-e per kg	%	EC kg CO ₂ -e per kg	%	
GP	320	100	410	100	
25FA	260	81	330	80	
50FA	220	69	270	66	

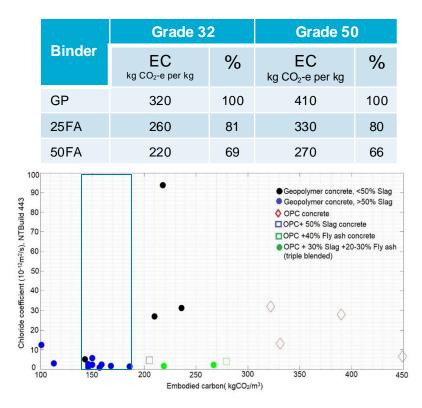
The power of triple blend



Embodied carbon, kg CO₂/m³

Grade 32 Grade 50 **Binder** % EC % EC kg CO₂-e per kg kg CO₂-e per kg GP 320 100 410 100 **50FA** 220 69 270 66 30FA40S 170 53 230 56




LCC that meet both performance requirements

UTS: ENGINEERING AND INFORMATION TECHNOLOGY eng.uts.edu.au it.uts.edu.au

Benefits of SCM as precursors in geopolymer concrete

UTS: ENGINEERING AND INFORMATION TECHNOLOGY

eng.uts.edu.au it.uts.edu.au

LOOKING FORWARD

SCMs and in particular fly ash are critical to sustainable concrete construction, and the pathway to net zero. We need to

- 1. Understand the future supply of fly ash, slag and new SCMs
- 2. The best use of individual SCM or their combinations for LCC
- 3. Important to combine structural efficiency with LCC to achieve most sustainable concrete structures

eng.uts.edu.au

it.uts.edu.au

UTS: ENGINEERING AND INFORMATION TECHNOLOGY

THANK YOU

Innovation in practice eng.uts.edu.au • it.uts.edu.au

UTS CRICOS PROVIDER CODE: 00099F